Evolving Beyond NAD 83

Richard Snay
U.S. National Geodetic Survey
Michael Craymer Natural Resources Canada

AGU-CGU Joint Assembly Montreal, May 18, 2004

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
National Ocean Service
National Geodetic Survey

Positioning America for the Future

|*
Natural Resources
Canada

Ressources naturelles
Canada

North American Datum of 1983 (NAD 83)

* NAD 83 is the legal reference system in the United States, Canada, Greenland, and in several Caribbean and Central American countries. (Mexico uses the ITRS.)
* National Geodetic Survey is responsible agency in the U.S.
* Natural Resources Canada is responsible agency in Canada.

NAD 83

- Originally, NAD 83 was mostly a horizontal reference system as defined by the latitudes and longitudes of reference stations positioned by triangulation and/or trilateration. (The U.S. contains over 250,000 horizontal reference stations.)
- NAD 83 has evolved to a 3-D reference system, thanks to GPS. (The U.S. contains over 60,000 reference stations positioned by GPS.)

IMPROVING POSITIONAL ACCURACY

REFERENCE FRAME	TIME SPAN	$\begin{aligned} & \text { NETWORK } \\ & \text { ACCURACY } \end{aligned}$	$\begin{array}{cc} \text { LOCAL } \\ Y & \text { ACCURACY } \\ \hline \end{array}$
NAD 27	1927-1986	10 Meters F	First-Order (1 part in 0.1 million)
NAD 83(1986) NAD 83(Original)	1986-1990	1 Meter F	First-Order (1 part in 0.1 million)
NAD 83(HARN)	1987-1997	0.1 Meter	B-Order (1 part in 1 million) A-Order (1 part in 10 million)
NAD 83(CORS) NAD 83(CSRS)	1994 -	$\begin{array}{ll} \longleftarrow & <0.01 \\ \longleftarrow & <0.02 \end{array}$	$\begin{aligned} & 1 \text { Meter - Horizontal } \\ & 2 \text { Meter }- \text { Ellipsoid Height } \longrightarrow \end{aligned}$

HIGH ACCURACY REFERENCE NETWORKS (HARN)

Canadian Base Network (CBN)

Continuously Operating Reference Stations

CORS Coverage (100, 200, 300, and 400 km radius) August 2003

Symbol color denotes sampling rates: (1 second) (5 seconds) (15 seconds) ($\mathbf{3 0}$ seconds)

Canadian Active Control Network (CACS)

North American Datum of 1983

* Origin is located about 2 meters from Earth's center.
* Orientation of axes differs from current international standard.
* Scale has been changed to agree with current international standard.

Current definition of NAD 83

- The current realization of NAD 83 is called NAD 83 (CORS96) in the U.S. and NAD 83 (CSRS) in Canada.
- This realization is defined in terms of a 14 -parameter Helmert transformation from ITRF00.
- This transformation is a composite of three separate transformation:

ITRF00 \rightarrow ITRF97 \rightarrow ITRF96 \rightarrow NAD $83($ CORS96)

Reference Frame Transformation

$$
\begin{aligned}
& x_{\text {NAD }}=T_{x}+(1+S) X x_{\text {ITRF }}+R_{z} X y_{\text {ITRF }}-R_{y} X_{z_{\text {ITRF }}} \\
& y_{\text {NAD }}=T_{y}-R_{z} X x_{\text {ITRF }}+(1+S) X y_{\text {ITRF }}+R_{x} X z_{\text {ITRF }} \\
& z_{\text {NAD }}=T_{z}+R_{y} X x_{\text {ITRF }}-R_{x} X y_{\text {ITRF }}+(1+S) X_{\text {ITRF }}
\end{aligned}
$$

The ITRF96 \rightarrow NAD 83 (CORS96) transformation was defined so that:

- ITRF96 coordinates of 12 VLBI stations located in North America map onto their corresponding NAD 83 coordinates.
- Scale of NAD 83 = Scale of ITRF96 at epoch 1997.0.
- The mapping of horizontal velocities from ITRF96 to NAD 83 is consistent with the NUVEL1A-NNR model.
- The origin of NAD 83 does not drift relative to the origin of ITRF96.
- The scale of NAD 83 does not change in time relative to the scale of ITRF96.

Transformation Parameters ITRF96 --> NAD_83

Translations: $\quad \mathrm{T}_{\mathrm{x}}=0.9910$ meters

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{y}}=-1.9072 \text { meters } \\
& \mathrm{T}_{\mathrm{z}}=-0.5129 \text { meters }
\end{aligned}
$$

Rotations: $\quad \mathrm{R}_{\mathrm{x}}=[25.79+0.0532 \mathrm{X}(\mathrm{t}-1997.0)] \mathrm{Xk}$ radians

$$
\mathrm{R}_{\mathrm{y}}=[9.65-0.7423 \mathrm{X}(\mathrm{t}-1997.0)] \mathrm{Xk} \text { radians }
$$

$$
\mathrm{R}_{\mathrm{z}}=[11.66-0.0316 \mathrm{X}(\mathrm{t}-1997.0)] \mathrm{Xk} \text { radians }
$$

Scale change: $\quad S=0.0$ (unitless)

Transformation Parameters ITRF00 --> NAD_83

Translations: $\mathrm{T}_{\mathrm{x}}=0.9956+0.0007 \bullet(\mathrm{t}-1997.0)$ meters $\mathrm{T}_{\mathrm{y}}=-1.9013-0.0007 \cdot(\mathrm{t}-1997.0)$ meters $\mathrm{T}_{\mathrm{z}}=-0.5215+0.0005 \cdot(\mathrm{t}-1997.0)$ meters

Rotations: $\quad \mathrm{R}_{\mathrm{x}}=[25.915+0.067 \mathrm{X}(\mathrm{t}-1997.0)] \mathrm{Xk}$ radians $\mathrm{R}_{\mathrm{y}}=[9.426-0.757 \mathrm{X}(\mathrm{t}-1997.0)] \mathrm{Xk}$ radians $\mathrm{R}_{\mathrm{z}}=[11.599-0.051 \mathrm{X}(\mathrm{t}-1997.0)] \mathrm{Xk}$ radians

Scale change: $\mathrm{S}=0.62-0.18 \cdot(\mathrm{t}-1997.0) \mathrm{ppb}$

Transforming Positions

- Use HTDP (US) or TRNOBS (CA) software to transform positions between reference frames and from one epoch to another
* HTDP = Horizontal Time-Dependent Positioning

Available at http://www.ngs.noaa.gov
Click on "Geodetic Tool Kit", then on "HTDP"

* TRNOBS = Transformation of Obervations \& Coords

Available at http://www.geod.nrcan.gc.ca

* HTDP can also be used to predict horizontal velocities

CORS (Horizontal velocities relative to 'stable' sites)

CORS (Vertical velocities relative to 'stable' sites)

Towards a Stable Reference System for Expressing 3-D motion

- We defined this stable reference frame by constraining our solution to maximize the number of stations whose horizontal velocities are less than 1 $\mathrm{mm} / \mathrm{yr}$ and whose vertical velocities are less than 2 $\mathrm{mm} / \mathrm{yr}$ in magnitude.

Towards a Stable Reference System for Expressing 3-D motion

- Our approach provides a mathematicalstatistical basis for defining stability.
- The results of our approach depend upon the sample of reference stations. A sample of reference stations located exclusively in Canada or Mexico would likely yield a different concept for stable North America.

How do we define a stable reference system for North America?

- Is there a geophysical basis for defining stability? (plate tectonics for horizontal motion; what if anything for vertical motion?)
- Are current plate motion models biased by the horizontal motion associated with glacial isostatic adjustment (a.k.a., postglacial rebound)?
- What about fluid withdrawal, seismic deformation, magmatic processes, sediment compaction, crustal loading/unloading, erosion, hydrological effects, seasonal effects, geocenter motion, etc.?

