Evolving Beyond NAD 83

Richard Snay U.S. National Geodetic Survey Michael Craymer Natural Resources Canada

AGU-CGU Joint Assembly Montreal, May 18, 2004

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service National Geodetic Survey

Positioning America for the Future

Natural Resources Canada Ressources naturelles Canada

North American Datum of 1983 (NAD 83)

* NAD 83 is the legal reference system in the United States, Canada, Greenland, and in several Caribbean and Central American countries. (Mexico uses the ITRS.)

* National Geodetic Survey is responsible agency in the U.S.

* Natural Resources Canada is responsible agency in Canada.

NAD 83

- Originally, NAD 83 was mostly a horizontal reference system as defined by the latitudes and longitudes of reference stations positioned by triangulation and/or trilateration. (The U.S. contains over 250,000 horizontal reference stations.)
- NAD 83 has evolved to a 3-D reference system, thanks to GPS. (The U.S. contains over 60,000 reference stations positioned by GPS.)

IMPROVING POSITIONAL ACCURACY

REFERENCE	TIME	NETWORI	K LOCAL
FRAME	SPAN	ACCURAC	CY ACCURACY
NAD 27	1927-1986	10 Meters	First-Order (1 part in 0.1 million)
NAD 83(1986) NAD 83(Origina	1986-1990 l)	1 Meter	First-Order (1 part in 0.1 million)
NAD 83(HARN)	1987-1997	0.1 Meter	B-Order (1 part in 1 million) A-Order (1 part in 10 million)
NAD 83(CORS) NAD 83(CSRS)	1994 -	← < 0.0 ← < 0.0	01 Meter - Horizontal 02 Meter - Ellipsoid Height →

HIGH ACCURACY REFERENCE NETWORKS (HARN)

Canadian Base Network (CBN)

Continuously Operating Reference Stations

CORS Coverage (100, 200, 300, and 400 km radius) August 2003

Symbol color denotes sampling rates: (1 second) (5 seconds) (15 seconds) (30 seconds) Craig 7/31/2003

• GSD tracking sites • GSC tracking sites • Regional tracking sites

North American Datum of 1983

- * Origin is located about 2 meters from Earth's center.
- * Orientation of axes differs from current international standard.
- * Scale has been changed to agree with current international standard.

Current definition of NAD 83

- The current realization of NAD 83 is called NAD 83 (CORS96) in the U.S. and NAD 83 (CSRS) in Canada.
- This realization is defined in terms of a 14-parameter Helmert transformation from ITRF00.
- This transformation is a composite of three separate transformation:

ITRF00→ITRF97→ITRF96→NAD 83 (CORS96)

Reference Frame Transformation

$$x_{\text{NAD}} = T_x + (1+S)Xx_{\text{ITRF}} + R_z Xy_{\text{ITRF}} - R_y Xz_{\text{ITRF}}$$
$$y_{\text{NAD}} = T_y - R_z Xx_{\text{ITRF}} + (1+S)Xy_{\text{ITRF}} + R_x Xz_{\text{ITRF}}$$
$$z_{\text{NAD}} = T_z + R_y Xx_{\text{ITRF}} - R_x Xy_{\text{ITRF}} + (1+S)Xz_{\text{ITRF}}$$

The ITRF96→NAD 83 (CORS96) transformation was defined so that:

- ITRF96 coordinates of 12 VLBI stations located in North America map onto their corresponding NAD 83 coordinates.
- Scale of NAD 83 = Scale of ITRF96 at epoch 1997.0.
- The mapping of horizontal velocities from ITRF96 to NAD 83 is consistent with the NUVEL1A-NNR model.
- The origin of NAD 83 does not drift relative to the origin of ITRF96.
- The scale of NAD 83 does not change in time relative to the scale of ITRF96.

Transformation Parameters ITRF96 --> NAD 83

Translations:

 $T_x = 0.9910$ meters $T_v = -1.9072$ meters $T_{z} = -0.5129$ meters

Rotations: $R_x = [25.79 + 0.0532X(t - 1997.0)]Xk$ radians $R_v = [9.65 - 0.7423X(t - 1997.0)]Xk$ radians $R_{z} = [11.66 - 0.0316X(t - 1997.0)]Xk$ radians

Scale change: S = 0.0 (unitless)

Transformation Parameters ITRF00 --> NAD_83

Translations: $T_x = 0.9956 + 0.0007 \cdot (t - 1997.0)$ meters $T_y = -1.9013 - 0.0007 \cdot (t - 1997.0)$ meters $T_z = -0.5215 + 0.0005 \cdot (t - 1997.0)$ meters

Rotations: $R_x = [25.915 + 0.067X(t - 1997.0)]Xk$ radians $R_y = [9.426 - 0.757X(t - 1997.0)]Xk$ radians $R_z = [11.599 - 0.051X(t - 1997.0)]Xk$ radians

Scale change: $S = 0.62 - 0.18 \cdot (t - 1997.0) \text{ ppb}$

Transforming Positions

- Use HTDP (US) or TRNOBS (CA) software to transform positions between reference frames and from one epoch to another
- * HTDP = Horizontal Time-Dependent Positioning Available at http://www.ngs.noaa.gov Click on "Geodetic Tool Kit", then on "HTDP"
 * TRNOBS = Transformation of Obervations & Coords Available at http://www.geod.nrcan.gc.ca

* HTDP can also be used to predict horizontal velocities

CORS (Horizontal velocities relative to 'stable' sites)

File: Fig5.horiz.vel

30, 644pt Page: "" 1 of 0

Ŧ

CORS (Vertical velocities relative to 'stable' sites)

File: Fig6.vert.vel

276, 345pt Page: "" 1 of 0

-

Towards a Stable Reference System for Expressing 3-D motion

• We defined this stable reference frame by constraining our solution to maximize the number of stations whose horizontal velocities are less than 1 mm/yr and whose vertical velocities are less than 2 mm/yr in magnitude. Towards a Stable Reference System for Expressing 3-D motion

- Our approach provides a mathematicalstatistical basis for defining stability.
- The results of our approach depend upon the sample of reference stations. A sample of reference stations located exclusively in Canada or Mexico would likely yield a different concept for stable North America.

How do we define a stable reference system for North America?

- Is there a geophysical basis for defining stability? (plate tectonics for horizontal motion; what if anything for vertical motion?)
- Are current plate motion models biased by the horizontal motion associated with glacial isostatic adjustment (a.k.a., postglacial rebound)?
- What about fluid withdrawal, seismic deformation, magmatic processes, sediment compaction, crustal loading/unloading, erosion, hydrological effects, seasonal effects, geocenter motion, etc.?