

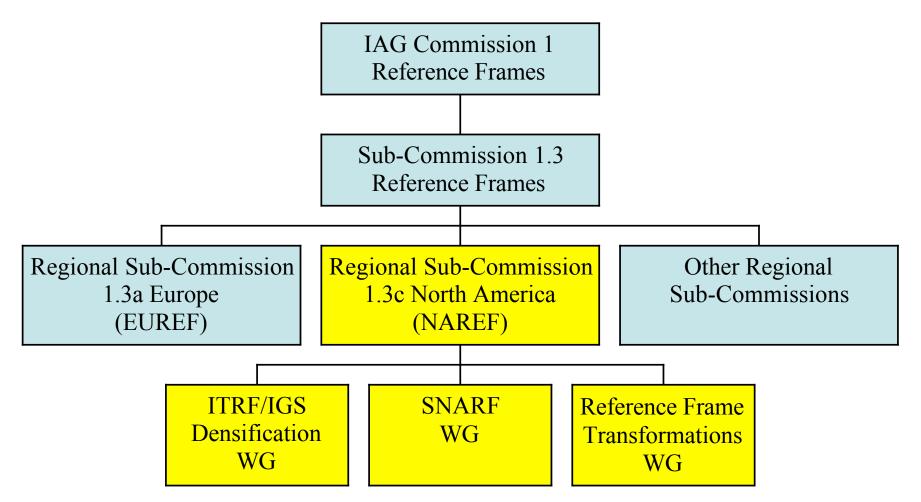
Regional Reference Frames for North America Current Status & Future Plans of Sub-commission 1.3c

Michael Craymer Geodetic Survey Division Natural Resources Canada Richard Snay U.S. National Geodetic Survey

Presented by Giovanni Sella U.S. National Geodetic Survey

IUGG XXIV General Assembly, Perugia, Italy, July 2-13, 2007

Natural Resources Canada Ressources naturelles Canada



Outline

- Regional Sub-commission 1.3c
- ITRF/IGS Densification Working Group
- Stable N.A. Reference Frame Working Group
- > Transformations Working Group

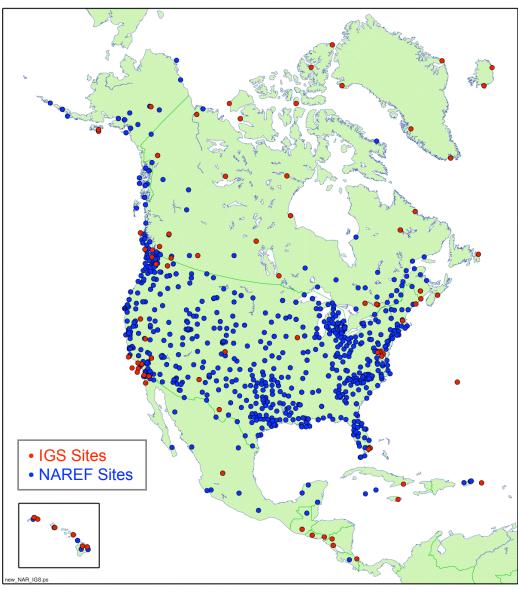
Sub-Commission 1.3c Objective

To provide international focus and cooperation for issues involving the geodetic reference frames of North America

ITRF/IGS Densification Working Group

Objective

- > Densify ITRF/IGS global reference frame in N.A.
 - Combining 6 regional solutions
 - Includes most continuous GPS sites in N.A. (~800 sta)
- Following IGS processing standards
 - Fixed orbits/EOP's used in most regional solutions

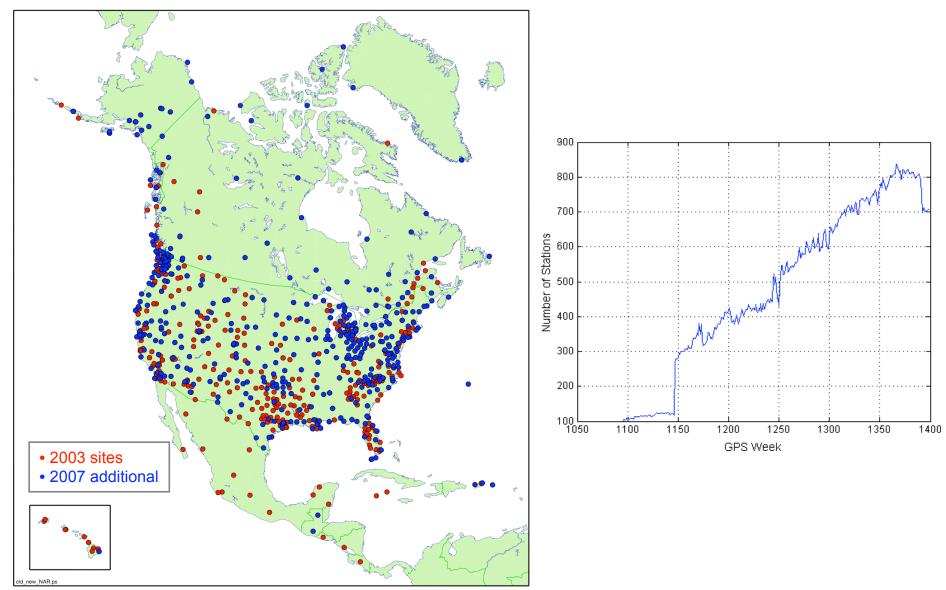

Products

- > Weekly coordinate solutions
- > Annual velocity solutions

Contributing Regional Solutions

<u>Contributor</u>	Since	<u>Software</u>	Region (# stations wk 1367)	
GSD/NRCan	2001	Bernese	Northern N.A. (104)	
GSD/NRCan	2001	GIPSY	Canada (42)	
PGC/NRCan	2001	Bernese	Western Canada (54)	
SIO	2001	GAMIT	Western N.A. (149)	
NGS	2002	PAGES	USA and Central Am.(706)	
MIT	2004	Combination (GIPSY,GAMIT	Western & Central N.A. (172)	

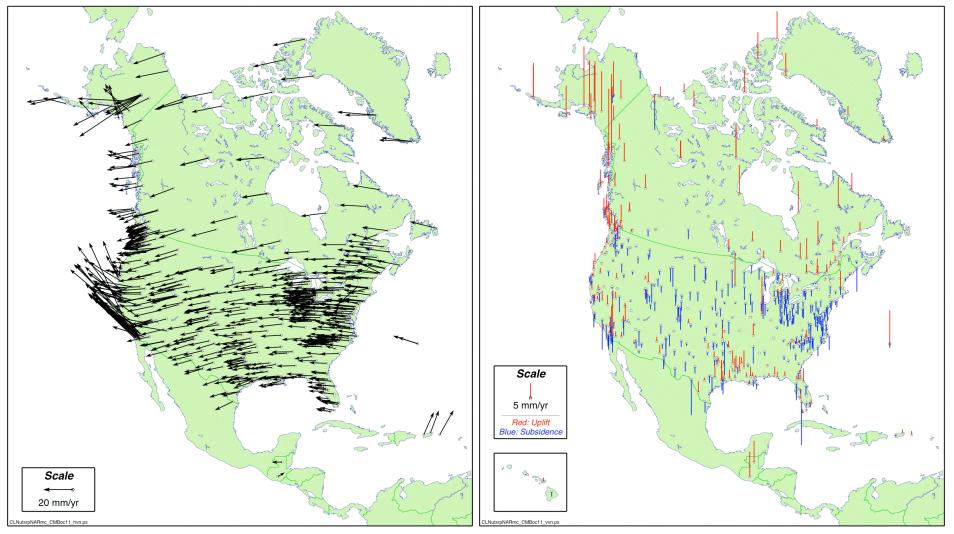
NAREF Densification Network


GPS Week 1367

ITRF/IGS Frame Sites	55
NAREF Densification	783
Total	838

Number of Stations in

1 solution	607
2 solutions	105
3 solutions	101
4 solutions	20
5 solutions	3
6 solutions	2


Network Growth

NAREF Velocity Field

Horizontal

Vertical

Future Plans

Solutions since GPS week 1400

- Based on absolute antenna phase centers (APCV's)
- ➢ SIO to expand solution to cover entire N.A.
 - More stations in 2 or more solutions
- > Combinations currently on hold
 - NGS & PGC still updating to new IGS procedures
 - SIO waiting for selection of sub-set of CORS sites (can't include all)

Reprocessing with updated IGS orbits (w/ APCV's)

- Waiting for IGS reprocessing to begin
- Contributors expected to reprocess all data
- ➢ Some will reprocess data back to 1994

Stable North American Reference Frame (SNARF) Working Group

Objective

- Define a reference frame that represents the stable interior of North America (plate-fixed)
- > To provide a standard to facilitate
 - Inter-comparison of velocity solutions
 - Geophysical interpretation (easier to interpret intra-plate motions)
- Primarily for EarthScope/PBO studies in U.S.
- > Joint Working Group with UNAVCO, Inc.

Possible successor to NAD 83

> NAD 83 offset from geocenter (ITRF/WGS) ~2 m

SNARF Approach

Determine a velocity model that brings stable North America to rest

Velocity model includes

- Rotation rates (plate motion)
- Translation rates (bias in GPS velocities?)
- GIA Motion (largest intra-plate motions)

$$\vec{V}_{\text{GPS}}(\lambda,\phi) = \vec{V}_{\text{GIA}}(\lambda,\phi) + \delta\vec{\Omega} \times \hat{r}(\lambda,\phi) + \delta\vec{T}$$

Based on ITRF/IGS reference frame

A Priori GIA Model

Average of a suite of GIA models

- > No consensus on Earth models so using a suite of Earth models
- > Initially using ICE-1 as basis of GIA (Peltier & Andrews, 1976)
 - Easier to work with for proof-of-concept
 - Will be attempt to use ICE-3G in future version but ...
 - Some Earth model parameters hard-wired into ICE-3G
- ➤ Using a range of Earth model parameters for ICE-1G
 - Lithospheric thickness
 - Upper & lower mantle viscosities
 - Based on commonly used values

Full covariance matrix used

Constructed empirically from variation of suite of models

GPS Velocities

Combination of 3 solutions in IGb00 frame

- > NAREF velocity solution for N.A.
 - Combination of 6 regional solutions
- > Purdue solution for eastern N.A. (Calais et al, JGR 2006)
- Canadian Base Network (CBN) densification solution for Canada
 - ~180 stations with 28 repeated GPS campaigns (2004-2002)

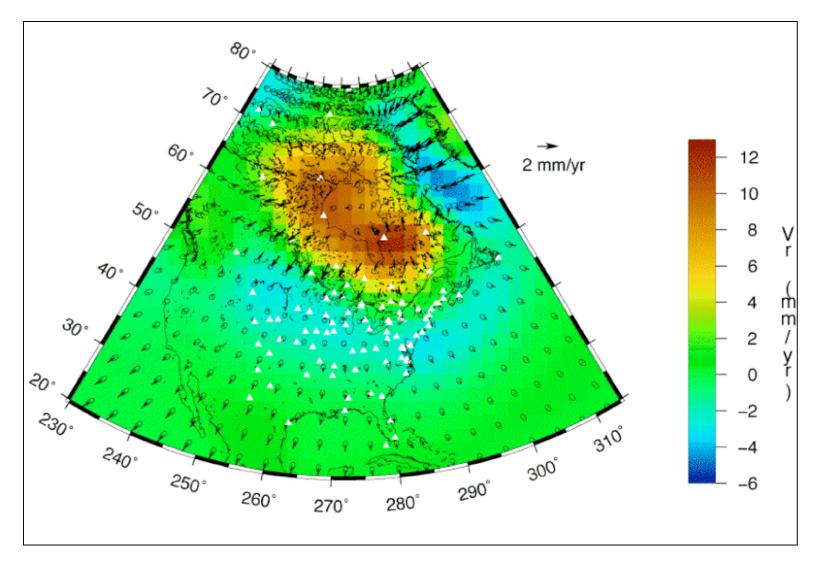
Combined solution

- Origin and orientation loosely constrained
- SNARF frame defined by best "datum" points (118)
 - Stable monumentation
 - > 3 year time span

Assimilation of GPS & GIA

Based on a novel technique by Jim Davis

- > Weighted assimilation of GPS and a priori GIA model
- Using full covariance matrices for each


Simultaneously estimating

- > GIA velocities at GPS points
- > GIA velocities on a $2^{\circ}x2^{\circ}$ grid (for user interpolation)
 - Adjusted through correlations with GPS points
- Translation & rotation rates from ITRF/IGb00 that minimize motion of "datum" sites

RMS of misfit

- ➢ Horizontal
 0.71 mm/y
- Vertical 1.30 mm/y

SNARF v1.0 GIA Model

SNARF Products

Positions & velocities of all GPS sites

- > If velocity of a site matches GIA velocity, it is on stable N.A.
- Differences represent non-GIA motion
- > Official PBO solutions provided in SNARF v1.0

GIA model velocities

> Give at GPS sites & on $2^{\circ}x2^{\circ}$ grid for interpolation

SNARF plate motion estimate (Euler rotations)

	ω _X	ω_{Y}	ω_{Z}	
SNARF (wrt IGb00)	0.06588	-0.66708	-0.08676	(mas/y)
ITRF2000	0.08316	-0.69084	-0.06120	
NNR NUVEL-1A	0.0532	-0.7423	-0.0316	

Future Plans

SNARF v2

- Expand list of "datum" sites
 - 60 more, if monumentation can be verified)
- Incorporate new/updated regional solutions
 - Latest NAREF solution
 - Alaska & N.W Canada GIPSY solution (Freymueller)
 - North American GIPSY solution (Blewitt et al.)
 - Updated CBN solution with 2005/6 campaigns

Transition from research mode to operational mode

- National geodetic agencies in US & Can expected to assume responsibility for maintaining SNARF
- > SNARF may possibly supercede NAD 83 in future

Transformations Working Group

Objective

To determine consistent relationships between international, regional and national reference frames, and to update these relationships as needed

NAD83-ITRF relationship

- > NAD83 still the primary horizontal/3D reference frame for N.A.
- > Now defined by 14-parameter transformations from/to ITRF
 - Originally a 7-parameter transformation w.r.t. ITRF97
 - Updated to other ITRF's using official IERS 14-parameter transformations between ITRF's
 - NNR NUVEL-1A used for N.A. plate motion (biased ~ 2 mm/y)
- > Transformation recently updated for ITRF2005

For More Information

www.naref.org

Thank you Giovanni !